Test- en meettoebehoren METREL

eMobility Analyser

A 1632

Gebruikshandleiding

Versie 1.3.7, Code nr. 20 752 886

Verdeler:

C.C.I. nv Louiza-Marialei 8, b. 5 2018 Antwerpen BELGIQUE T: 03/232.78.64 F: 03/231.98.24 E-mail: info@ccinv.be

Fabrikant:

Metrel d.d. Ljubljanska cesta 77 1354 Horjul Slovenië

Website : <u>http://www.metrel.si</u> e-mail : <u>metrel@metrel.si</u>

C Het merkteken op uw apparatuur geeft aan dat het voldoet aan de eisen van alle onderworpen EU (Europese Unie) regelgevingen.

© 2020 Metrel

De handelsnamen Metrel®, *Smartec*®, *Eurotest*®, *Auto Sequence*® *zijn handelsmerken die in Europa en andere landen zijn geregistreerd.*

Niets uit deze uitgave mag worden verveelvoudigd of gebruikt in welke vorm of op welke wijze dan ook zonder schriftelijke toestemming van METREL.

Inhoudstafel

1	Alge	mene beschrijving	5
	1.1	Waarschuwingen en nota's	5
	1.1.1	Markeringen op het instrument	6
	1.1.2	Nota's i.v.m. meetfuncties	6
	1.2	Batterij en laden van Li-ion batterij	7
	1.2.1	Batterij indicator	7
	1.2.2	Lader	7
	1.2.3	Li-ion batterij handleiding	7
	1.3	Toegepaste normen	8
2	Toeb	ehoren	9
	2.1 S	tandaard set	9
	2.2 0	ptionele toebehoren	9
3	Besc	hrijving van de adapter	10
	3.1	Front paneel	10
4	Gebr	uik van de analyser	12
	4.1	Vermogen voeding overwegingen	13
	4.2	Gebruiksmodus	13
	4.2.	1 Hoe de operatiemodus selecteren of veranderen	14
	4.3	Gebruik in de autonome modus	14
	4.4	Gebruik of afstand	14
5	Enke	lvoudige tests	15
	5.1	Test verbindingen naar laadkabels/ centrales	15
	5.1.1	Verbinding verwijderbare laadkabels voor Modus 3 EVSE	15
	5.1.2	Verbinding naar Modus 2 laadkabels	15
	5.1.3	Verbinding naar Modus 3 EVSE	16
	5.2	Veiligheid en functietests	16

	5.3	Diagnostiek test – EV-simulator	17
	5.3.1	Afstandsverbinding	17
	5.3.2	Autonome modus	18
	5.4	Diagnostiek test – Monitor	18
	5.5	Diagnostiek test – CP foutbericht	19
	5.6	Simulaties van netwerk spanning foutberichten	20
stroomvoo	5.6.1 przieni	Simulatie van de aansluiting van de laadkabel op een defeo ng	cte 20
	5.6.2	Simulatie van storingen die zich tijdens het gebruik voordo	en 20
6	Upgr	aden van de adapter	21
7	Onde	erhoud	22
	7.1	Periodieke ijking	22
	7.2	Zekeringen	22
	7.3	Onderhoud	22
	7.4	Schoonmaken	22
8	Tech	nische eigenschappen	23
	8.1 D	iagnostiek test (EVSE)	23
	8.2	PP, CP-simulator	24
	8.3	Systeemstatus	24
	8.4	Foutmeldingen	25
	8.5	Anderen	25
	8.6	Algemene gegevens	26

1 Algemene beschrijving

eMobility Analyser is een multifunctionele, draagbare, batterij- of netvoedingstestadapter die bedoeld is voor het testen van de veiligheid en functionaliteit van EVSE en het opladen van kabels voor EV's

Beschikbare functies en kenmerken van de eMobility Analyser:

- > Diagnostische test voor verificatie van de goede werking van het CP-circuit;
- > Simulatie van de CP en PP-circuits van elektrische voertuigen;
- Simulatie van fouten op CP-circuit en ingangsnet;
- Toegankelijke ingangen/uitgangen voor de aansluiting van veiligheidstesters;
- > Bewaking van de communicatie tussen laadstation en EV;
- > Bluetooth-communicatie met Metrel veiligheidstesters.

1.1 Waarschuwingen en nota's

Om de veiligheid van de gebruiker op het hoogste niveau te houden tijdens het uitvoeren van diverse tests en metingen, adviseert Metrel om uw eMobility Analyser adapters in goede staat en onbeschadigd te houden. Houd bij het gebruik van de adapter rekening met de volgende algemene waarschuwingen:

- Waarschuwing op het testinstrument betekent "Lees de gebruiksaanwijzing met speciale aandacht voor een veilig gebruik". Het symbool vereist een actie!
- Als het instrument wordt gebruikt op een manier die niet in deze handleiding of in de handleiding van de beoogde testapparatuur is gespecificeerd, kan de bescherming die wordt geboden, worden verminderd!!
- Lees deze gebruiksaanwijzing zorgvuldig door, anders kan het gebruik van de testapparatuur gevaarlijk zijn voor de gebruiker, voor de testapparatuur of voor het geteste object!
- Gebruik de testapparatuur of een van de accessoires niet als er schade wordt opgemerkt!
- De in-/uitgangsaansluitingen zijn alleen bedoeld voor testdoeleinden! Sluit geen andere apparaten aan, behalve geschikte testapparatuur.
- Sluit de testapparatuur niet aan op een netspanning die afwijkt van de spanning die is aangegeven op het etiket naast de netstekker, anders kan deze beschadigd raken.
- Gebruik alleen geaarde 1 fase of 3 fase netvoeding om A 1632 van stroom te voorzien. PE moet een lage impedantie naar aarde hebben! Sommige pre-tests die de PE-fout op het lichtnet zouden kunnen bepalen, zijn uitgeschakeld in modus 2, om de werking in het IT-systeem mogelijk te maken. Bij gebruik van Mode 2 moet deze opmerking in acht worden genomen. Zie hoofdstuk 4.2 Gebruiksmodus

- Alle normale veiligheidsmaatregelen moeten worden genomen om risico's op elektrische schokken bij werkzaamheden aan elektrische installaties te voorkomen!
- Alleen voldoende opgeleide en bekwame personen mogen de apparatuur bedienen.
- Service-interventie of afstelling mag alleen worden uitgevoerd door bevoegd en geautoriseerd personeel!

1.1.1 Markeringen op het instrument

"Lees de gebruiksaanwijzing met speciale aandacht voor de veiligheid". Het symbool vereist een actie!

Het merkteken op uw apparatuur geeft aan dat het voldoet aan de eisen van alle onderworpen EU-regelgeving.

Deze apparatuur moet worden gerecycled als elektronisch afval.

Deze apparatuur is beschermd door een versterkte isolatie

1.1.2 Nota's i.v.m. meetfuncties

R iso

- De weerstanden in het OUTPUT-gebied, tussen de klemmen L/L1-PE, L2-PE, L3-PE zijn ca 100M Ω en tussen de klemmen L/L1-N, L2-N, L3-N, Lx-Ly zijn ca 200 M Ω . Hiermee moet rekening worden gehouden als Riso wordt gemeten.
- De OUTPUT-voltage LED indicators kunnen oplichten tijdens de isolatietest. Dit heeft geen bijzondere betekenis en heeft geen invloed op de meting.

Diagnostiek test (EVSE)

- Vanwege capacitieve overspraak tussen geleiders in de driefasen uitgangsadapters zal een bepaalde spanning ULxN worden weergegeven op niet aangesloten fasen.
- Gebruik de A 1631 Monitor adapterkabel niet voor laadstromen hoger dan 32

Α.

1.2 Batterij en laden van Li-ion batterij

De A 1632 adapter wordt gevoed met herlaadbare Li-ion batterijpack of met voeding via het netwerk.

1.2.1 Batterij indicator

Het ON LED lampje geeft de staat van de batterij aan

Netwerk	Vermogen	ON LED	
Verbonden	Off	Knipperlicht wit	Analyser is aan het opladen
Verbonden	On	Groen	Analyser staat aan en is aan het laden
Niet verbonden	On	Groen	Analyser staat aan, Ubat > 20% capaciteit
Niet verbonden	On	Rood	Analyser staat aan, Ubat<20% capaciteit
		Knipperlicht	Batterij foutmelding of batterij is helemaal
		rood-blauw	leeg

1.2.2 Lader

De batterij wordt opgeladen wanneer de adapter A 1632 op de netvoeding wordt aangesloten. Het intelligente laadsysteem zorgt voor de juiste bescherming en maximale levensduur van de Li-ion batterij. De typische oplaadtijd is 4 uur en de autonome werking is >18 uur.

1.2.3 Li-ion batterij handleiding

Li-ion oplaadbare batterijen vereisen routine-onderhoud en zorgvuldigheid bij gebruik en behandeling. Om de maximale levensduur van de batterij te bereiken, dient u rekening te houden met het volgende

Gebruik:

- Laat batterijen niet gedurende langere tijd ongebruikt meer dan 6 maanden (zelf ontlading).
- Laat een batterij niet langdurig opladen wanneer deze niet wordt gebruikt.

Opslag:

- Laad of ontlaad de accu van de adapter tot ongeveer 50% van de capaciteit voordat u hem opbergt.
- Laad de batterij van de adapter minstens één keer om de 6 maanden op tot ongeveer 50% van de capaciteit.

Vervoer:

• Controleer altijd alle toepasselijke plaatselijke, nationale en internationale voorschriften alvorens een Li - ion accu te vervoeren.

1.3 Toegepaste normen

De A 1632-adapter wordt vervaardigd en getest volgens de volgende voorschriften:

Elektromagnetische compatibiliteit (EMC)			
EN 61326-1	Veiligheidseisen voor elektrisch materieel voor meet- en regeltechniek en laboratoriumgebruik - Deel 1: Algemene eisen		
EN 61326-2-2	Elektrische uitrusting voor meting, besturing en laboratoriumgebruik - EMC-eisen - Deel 2-2: Speciale eisen - Beproevingsconfiguraties, operationele voorwaarden en prestatie-eisen voor draagbare beproevings-, meet- en bewakingsapparatuur gebruikt in laagspanningsdistributiesystemen		

Veiligheid (LVD)	
EN 61010-1	Veiligheidseisen voor elektrisch materieel voor meet- en regeltechniek en laboratoriumgebruik - Deel 1: Algemene eisen
EN 61010-2-030	Veiligheidseisen voor elektrisch materieel voor meet- en regeltechniek en laboratoriumgebruik - Deel 2-030: Bijzondere eisen voor test- en meetstroomkringen
EN 61010-031	Veiligheidseisen voor handsondes voor elektrische toepassingen meting en test

Functioneel		
EN 61557 series Elektrische veiligheid in laagspanningsverdeelnetten tot		
	1000 V a.c. en 1500 V d.c Apparatuur voor beproeven,	
	meten of bewaken van veiligheidsmaatregelen	
EN 61851-1	Laden via een geleidende verbinding van elektrische	
	voertuigen - Deel 1: Algemene eisen	

Li-ion batterij	
IEC 62133	Secundaire cellen en batterijen die alkali- of andere niet- zuurhoudende elektrolyten bevatten - Veiligheidseisen voor draagbare verzegelde secundaire cellen en voor batterijen die van deze cellen zijn gemaakt, voor gebruik in draagbare toepassingen

Opmerking over EN en IEC-normen:

De tekst van deze handleiding bevat verwijzingen naar Europese normen. Alle normen van de EN 6xxxx (bijv. EN 61010) serie zijn gelijkwaardig aan IEC-normen met hetzelfde nummer (bijv. IEC 61010) en verschillen alleen in gewijzigde delen die vereist zijn door de Europese harmonisatieprocedure.

2 Toebehoren

De accessoires bestaan uit standaard en optionele accessoires. Optionele accessoires kunnen op verzoek worden geleverd. Zie bijgevoegde lijst voor standaard configuratie en opties of neem contact op met uw distributeur of zie de METREL home page: <u>http://www.metrel.si</u>.

2.1 Standaard set

- eMobility-analysator A 1632
- Netvoedingskabel 1 fase 10 A-stekker naar 3 fase 16 A-stekker adapter A 1633
- Testkabel met mannelijke stekkerverbinding type 2, lengte 2 m, A 1634
- Meetsnoer 2 mm/ 4 mm veiligheidsbanaanstekker adapter, rood, lengte 1 m, A 1635
- Beschermtas voor accessoires (gemonteerd op de koffer)
- Gebruikshandleiding
- Kalibratiecertificaat

2.2 Optionele toebehoren

Zie het bijgevoegde blad voor een lijst van optionele accessoires en licentiesleutels die op verzoek verkrijgbaar zijn bij uw verdeler.

3 Beschrijving van de adapter

3.1 Front paneel

Het paneel voor de gebruiker wordt hieronder getoond in Figuur 3.1

Figuur 3.1: Frontpaneel

1	Ingang voor netvoeding (CEE 16 A).
2	Netspanning rode LED geeft aansluiting op netspanning aan (ingestelde
	bedrijfsmodus).
	Zie hoofdstuk 4.1 Overwegingen m.b.t. de stroomvoorziening voor meer
	informatie.
3	Ingangszekeringen (zie hoofdstuk 7.2 Zekeringen voor meer informatie)
4	Lx/ N/ PE/ CP/ PP veiligheidsbussen INPUT voor aansluiting van een
	veiligheidstester
5	Stroomlus voor aansluiting van lekstroomtang voor het meten van IPE
6	UINPUT toets
	Om wel of geen spanning op de INPUT-connectoren aan te sluiten (1-
	fasecontactdoos, type 2-connector, 3-fasecontactdoos, 4 mm/ 2 mm
	veiligheidscontactdozen)

7	U _{INPUT} LED-indicator Type 2 INPUT-aansluiting voor aansluiting van een 3 fase			
8	Type 2 INPUT-aansluiting voor aansluiting van een 3 fase Mode 3 laadkabel			
9	1 fase INPUT aansluiting voor aansluiting	van een 1 fase Mode 2 laadkabel		
10	RS232-verbindingspoort (bedoeld voor fi	rmware-upgrade en servicedoeleinden)		
11	Veelkleurige LED AAN			
	Zie hoofdstuk 1.2.1 Batterij-indicatie voo	r meer informatie		
12	ON/ OFF-toets			
	Schakelt de eMobility Analyser aan (kort	indrukken) of uit (2 s indrukken).		
	Automatische uitschakeling na 20 minute	en zonder activiteit.		
13	Afstandsbediening LED geeft aan dat de a	adapter wordt aangestuurd door de		
	Metrel veiligheidstester (inclusief CP, PP	en Fout status)		
14	Draaischakelaar voor selectie van verschillende gesimuleerde fouten:			
45	Zie hoofdstuk 8.4 Foutberichten voor me	er informatie		
15	Fout AAN toets			
10	In-/ultschakelen van de geselecteerde fo	ut.		
16	Fout AAN LED	aganast		
17	Drazischakolaar voor het instellen van de	eyepasi		
1/	Draaischakelaar voor net instellen van de status van Control Pliot (CP aan OUTPUT zijdo)			
	D	EV opgeladen en ventilatie		
	B	FV aangesloten		
		geen EV aangesloten		
	B	FV aangesloten		
18	Draaischakelaar voor het instellen van de	weerstand van de Piloot stroom waarde-		
10	henaler (PP aan OIITPIIT-ziide) [NC 13 A 20 A 32 A 63 A 80 A]			
19	I x/ N/ PF/ CP/ PP/ CP MON veiligheid OUTPUT-stopcontacten voor aansluiting van			
	een veiligheidstester			
20	L/L1, L2, L3 OUTPUT LED's			
	ON = netspanning op de OUTPUT-testaar	nsluiting aanwezig,		
	OFF = netspanning op de OUTPUT-testaa	nsluiting niet aanwezig		
21	21 OUTPUT-connectoren voor testkabelverbinding met de uitgang van de laa			
	of EVSE			
22	3 fase INPUT aansluiting voor aansluiting	van een 3 fase Mode 2 laadkabel		
Noto:				

Nota:

Aan INPUT-zijde, de L/L1, L2, L3, N, PE, CP en PP-veiligheidsstopcontacten

4 Gebruik van de analyser

De eMobility Analyser kan autonoom werken of kan op afstand worden bediend via een Bluetooth-communicatieverbinding met Metrel Instrument. De volgende testcondities kunnen worden ingesteld:

Toetsen, schakelaars, LED's	Gerelateerd tot	Test voorwaarden
UINPUT On/Off = Off	INPUT L/L1,L2,L3,N,PE	Geen spanning op de ingang van de laadkabel, ingang is losgekoppeld van het lichtnet
UINPUT On/Off = On Error ON = Off	INPUT L/L1,L2,L3,N,PE	Netspanning NORMALE conditie op de ingang van de laadkabel
UINPUT On/Off = On Error ON = On FOUTMELDING INPUT is ingesteld	INPUT L/L1,L2,L3,N,PE	Netspanningsfout op de ingang van de laadkabel (geselecteerd door de stand van de ERRORS-schakelaar). Zie hoofdstuk 5.6 Simulatie van netspanningsfouten voor meer informatie.
PP STATE	OUTPUT PP	EV simulatie, laadkabel stroomsterkte
CP STATE Foutmelding ON = Off	OUTPUT CP	EV-simulatie, normale werkingsmodi: A, B, C geen ventilatie, A, B, D ventilatie vereist tijdens opladen
Error ON = On FOUTMELDING OUTPUT is ingesteld	OUTPUT CP	EV-simulatie, fout op CP gesimuleerd: ->-sh - Diode kort, CPsh - CP_PE kort, PEop - PE open
Gelijk welke combinatie	OUTPUT L/L1,L2,L3,N,PE	Connection at the output of charging cable / station. The condition depends on the set state of the instrument.

4.1 Vermogen voeding overwegingen

De 3-fase 16 A CEE-ingang is bedoeld voor aansluiting op één- en driefasige netvoeding

Eenfasige aansluiting

1 fase 10 A stekker naar 3 fase 16 A CEE kabelverbindingsadapter A 1633 moet worden gebruikt voor eenfasige-aansluiting. Hij is geschikt voor het intern laden van batterijen en voor eenfasige voeding van de INPUT-sectie voor het testen van eenfasige Mode 2 laadkabels

3-fasige aansluiting

Voor het testen van 3 fase Mode 2 laadkabels is 3 fase netvoeding naar de eMobility Analyser en zijn INPUT-sectie nodig, neutrale N-draad aansluiting is verplicht. Voor de netvoeding kan een gewoon 3-fase CEE 16 A 5-draads verlengsnoer worden gebruikt.

Gebruiksmodus	Symbool	LED indicatie	Beschrijving
Modus 1	☆ N—→PE	AAN	Correcte aansluiting
Modus 2	₩ N -/ >PE	Knipperend (5s cyclus)	Correcte aansluiting
	₩ L G N	Knipperend (~0,3s cyclus)	L - N gekruist of verkeerd spanningssysteem

Nota

Als de netspanning buiten de standaardniveaus voor 115 V~, 230 V~ en 230 V/ 400 V 3~ valt, knippert de MAINS LED snel, kan de eMobility Analyser niet worden ingeschakeld en is bediening met de adapter niet mogelijk.

4.2 Gebruiksmodus

De analyser heeft twee gebruiksmodi.

Modus 1

Mode 1 is de voorkeursmodus. Deze wordt aangegeven door een korte pieptoon wanneer de netspanning wordt ingeschakeld. In deze modus is de PE-aansluiting van de INPUT-connectoren verbonden met de N-geleider van de installatie. Dit voorkomt dat de RCD onnodig uitschakelt wanneer RCD- of impedantietests worden uitgevoerd.

Deze bedrijfsmodus 1 is geschikt voor TN en TT-spanningssystemen. De net-LED zal een fout aangeven en de analyser kan niet worden ingeschakeld indien aangesloten op een IT-spanningssysteem.

Modus 2

Mode 2 wordt aangegeven door drie piepjes wanneer netspanning wordt aangelegd. In deze modus is de PE-aansluiting van de INPUT-connectoren verbonden met de PE-geleider van de installatie. Deze bedrijfsmodus is geschikt voor elk spanningssysteem.

Nota: In modus 2 kunnen de RCD's in de installatie uitschakelen als ze gevoeliger zijn dan de PRCD in de geteste laadkabel. Hinderlijk doorslaan van de RCD kan

worden vermeden als een geschikte alternatieve aansluiting voor de RCD-tests wordt gebruikt

4.2.1 Hoe de modus selecteren of veranderen

Instellingsprocedure

- Schakel de eMobility Analyser uit.
- Houd de UINPUT-toets gedurende ten minste 5 s ingedrukt terwijl u de adapter AAN schakelt (ON/OFF-toets). (U kunt ook de netvoeding inschakelen terwijl u de UINPUT-toets tenminste 5 s ingedrukt houdt).
- Wanneer u de U_{INPUT} toets loslaat, hoort u een pieptoon om de nieuw ingestelde modus aan te geven:

◄ 》	Enkele beep	Modus 1 ingeschakeld
◄ 测 测 测	3- beep	Modus 2 ingeschakeld

eMobility Analyser is now ready to operate in new operating mode

Nota: Herhaal de bovenstaande procedure om tussen de bedrijfsmodi te schakelen.

4.3 Gebruik in autonome modus

In deze bedrijfsmodus is er geen noodzaak voor dataverbinding met masterinstrumenten. De afstandsbedienings-LED is uitgeschakeld. De eMobility Analyser testconditie kan worden ingesteld met de schakelaars en toetsen op het frontpaneel van de analyser.

4.4 Gebruik met afstandsbediening

Voor het op afstand instellen van testcondities moet de eMobility Analyser eerst via Bluetooth met de Metrel veiligheidstester worden verbonden. Zie de selectietabel voor ondersteunde instrumenten en de gebruiksaanwijzing van het instrument, hoofdstuk Instellingen voor meer informatie. De afstandsbedienings-LED van de analyser staat op AAN en geeft aan dat deze door het instrument wordt bestuurd. In de afstandsbediening modus werken de toetsen van de analysator niet (behalve de On/Off toets) en is de stand van de draaischakelaars niet relevant. De testparameters worden ingesteld door het instrument dat de analysator aanstuurt.

De afstandsbedienings-LED van de analysator brandt alleen wanneer de bijbehorende diagnostische test (EVSE) op het instrument is geselecteerd. Wanneer een andere veiligheidstest op het instrument is geselecteerd, kan de analysator niet op afstand worden bediend en brandt de LED op afstand UIT.

5 Enkelvoudige tests

5.1 Testverbindingen naar laadkabels/ centrales

5.1.1 Verbindingen van verwijderbare laadkabel voor modus 3 EVSE

Figuur 5.1: Verbinding van verwijderbare laadkabel voor modus 3 EVSE

5.1.2 Verbinding naar modus 2 landkabels

Figuur 5.2: Verbinding van een 1 fase modus 2 laadkabel

Figuur 5.3: Verbinding van een 3 fase modus 2 laadkabel

5.1.3 Verbinding naar modus 3 EVSE

Figuur 5.4: Verbinding van een modus 3 EVSE

5.2 Veiligheids- en functionele tests

In het algemeen kunnen de enkelvoudige veiligheidstests en -inspecties worden uitgevoerd in combinatie met alle veiligheidstesters. Voor meer informatie over het uitvoeren van afzonderlijke tests en inspecties, zie de handleiding van de veiligheidstester.

Test circuit voorbeelden

Figuur 5.5: voorbeeld van RISO tests van een modus 2 laadkabel

Figuur 5.6: Voorbeeld van Zline test op een modus 3 EVSE

Meetprocedure

- Sluit de laadkabel/het laadstation aan op de eMobility Analyser (zie testcircuits hierboven).
- Selecteer de meting of inspectie op de veiligheidstester.
- Stel testparameters/ grenzen van de geselecteerde meting in op het testinstrument.
- Zet de laadkabel/ het laadstation in de juiste bedrijfsmodus door de eMobility Analyser in te stellen.
- Sluit de meetsnoeren van het instrument aan op de Analyser bussen (optioneel), zie testcircuits hierboven en Instructiehandleiding van het testinstrument.
- Voer de meting of inspectie uit.
- Sla de resultaten op (optioneel).

5.3 Diagnostiek test – EV-simulator

Deze test is bedoeld voor simulatie van een elektrisch voertuig met eMobility Analyser. De CP- en PP-staten kunnen worden ingesteld om de laadkabel/het laadstation in de juiste werkingsmodus te brengen. Het CP-signaal wordt geanalyseerd en de aanwezigheid van spanning aan de uitgang van de laadkabel/het laadstation wordt gecontroleerd.

5.3.1 Afstandsverbinding

De test wordt uitgevoerd in combinatie met een extern (master) instrument. De resultaten worden verzonden via een Bluetooth-communicatieverbinding en weergegeven op het master-instrument.

Testverbindingen

Figuur 5.8: Diagnose test – EV-simulator test verbinding naar modus 2 laadkabel – Afstandsbediening

Meetprocedure

- Sluit de laadkabel/het laadstation aan op de eMobility Analyser (zie testcircuits hierboven).
- Selecteer Diagnosetest EV-simulator op het masterinstrument.
- Stel testparameters in op het masterinstrument.
- Controleer of de eMobility Analyser in Remote mode staat (Bluetooth communicatie tussen eMobility Analyser en het masterinstrument is tot stand gebracht).
- Voer de diagnostische test uit.
- Status van de test handmatig instellen (optioneel).
- Resultaten opslaan (optioneel).

Voor informatie over testparameters en weergegeven resultaten wordt verwezen naar de gebruiksaanwijzing van het master-instrument.

5.3.2 Autonome modus

De eMobility Analyser testconditie kan worden ingesteld met de schakelaars en toetsen op het frontpaneel van de analyser. In deze modus kunnen alleen Mode 2 enkelfasige en 3-fasige laadkabels worden getest.

Figuur 5.9: Diagnosetest - EV-simulator testverbinding met de Modus 2 laadkabels - Autonome modus

5.4 Diagnose test – Monitor

Deze test controleert en analyseert het CP-signaal en de spanningen tussen de laadkabel/het laadstation en het elektrische voertuig. Voor deze test is een monitor adapterkabel (A 1631) nodig.

De test wordt uitgevoerd in combinatie met de eMobility Analyser en een extern (master) instrument. De resultaten worden via Bluetooth verzonden en op het master-instrument weergegeven.

Testverbinding

Figuur 5.10: Voorbeeld van een diagnose test - Monitor

Meetprocedure

- Verbind de kabeladapter A 1631 tussen de laadkabel/het laadstation en het elektrische voertuig.
- Sluit de testsondes aan op de A 1632 eMobility Analyser.
- Kies op het masterinstrument de diagnosetest Monitor.
- Stel testparameters in op het masterinstrument.
- Controleer of de eMobility Analyser in Remote mode staat (Bluetooth communicatie tussen eMobility Analyser en masterinstrument is tot stand gebracht).
- Voer de diagnostische test uit.
- Status van de test handmatig instellen (optioneel).
- Resultaten opslaan (optioneel).

Voor informatie over testparameters en weergegeven resultaten wordt verwezen naar de gebruiksaanwijzing van het master-instrument.

5.5 Diagnose test – CP-foutmeldingen

Met deze test kunnen typische fouten (diode kortgesloten, CP - PE kortgesloten, PE open) op het CP-signaal worden gesimuleerd. De uitschakeltijd van de laadkabel/ het laadstation, als reactie op de gesimuleerde fout op het CP-signaal, wordt gemeten.

De test wordt uitgevoerd in combinatie met een extern (master) instrument. De resultaten worden via Bluetooth verzonden en op het master-instrument weergegeven.

Testverbindingen

Verwijs naar figuur 5.7 en figuur 5.8 voor testverbindingen

Meetprocedure

- Sluit de laadkabel/het laadstation aan op de eMobility Analyser (zie figuur 5.7 en figuur 5.8).
- Selecteer de diagnosetest CP-fout op het master-instrument.
- Stel testparameters (CP-fout) in op het masterinstrument.
- Controleer of de eMobility Analyser in Remote mode staat (Bluetooth communicatie tussen eMobility Analyser en het masterinstrument is tot stand gebracht).
- Voer de diagnostische test uit.

- Status van de test handmatig instellen (optioneel).
- Resultaten opslaan (optioneel).

Voor informatie over testparameters en weergegeven resultaten wordt verwezen naar de gebruiksaanwijzing van het master-instrument.

5.6 Simulaties van netwerk spanningsfoutmeldingen

Mode 2 laadkabels hebben verschillende manieren om de netconditie te testen:

- Sommige tests worden uitgevoerd wanneer ze op het lichtnet worden aangesloten (bij het inschakelen),
- Sommige testen bewaken de netconditie de hele tijd.

Daarom heeft eMobility Analyser twee opties voor het simuleren van netspanningsfouten.

5.6.1 Simulatie van verbinding van de laadkabel naar defect elektriciteitsnet

Er wordt een verkeerde netspanning aangelegd op de INPUT-aansluitingen/bussen van de eMobility Analyser.

Meetprocedure

- Sluit de laadkabel aan op de eMobility Analyser (zie figuur 5.8).
- Selecteer de fout met de ERRORS-draaischakelaar.
- UINPUT moet op OFF staan. (Als dat nog niet het geval is, zet UINPUT dan op OFF).
- Druk op de Error ON-toets om de fout in te stellen en de laadkabel van stroom te voorzien.
- Controleer de respons van de geteste laadkabel.

5.6.2 Simulatie van een fout die tijdens de werking optreedt

De Error (foutmelding) wordt geactiveerd nadat netspanning (normale toestand) wordt aangelegd op de INPUT-aansluitingen/bussen van de eMobility Analyser.

Meetprocedure

- Sluit de laadkabel aan op de eMobility Analyser (zie figuur 5.8).
- Selecteer de fout met de ERRORS-draaischakelaar.
- UINPUT moet op ON staan. (Als dat nog niet het geval is, zet UINPUT dan op ON).
- Druk op de ERROR ON toets om de fout in te stellen.
- Controleer de respons van de geteste laadkabel.

Nota:

• Het is mogelijk deze simulatie uit te voeren voor de volgende fouten: L open (elke fase), N open en PE open.

6 De adapter upgraden

De A 1632 eMobility Analyser kan vanaf een PC via de RS 232 communicatiepoort worden geüpgraded. Hierdoor kan de A 1632 eMobility Analyser up-to-date worden gehouden, zelfs als de normen of voorschriften veranderen. Download de nieuwste firmware via het Metrel downloadcentrum: https://www.metrel.si/en/downloads/

Figuur 6.1: Upgraden van de adapter

Procedure

- Draai twee schroeven los (zoals aangegeven in figuur 6.1) en verwijder de beschermkap van de RS 232-connector.
- Sluit de standaard DB9 RS232-interfacekabel aan op de A 1632 en de pc. (Gebruik een USB-naar-RS232-adapter als er geen seriële pc-poort beschikbaar is).
- Speciale upgradesoftware FlashMe zal u door de upgradeprocedure leiden.
- Wanneer de upgrade voltooid is, plaatst u de beschermkap van de RS 232-connector terug

Nota:

- Neem contact op met uw dealer voor meer informatie.
- Upgraden van de firmware via Bluetooth-communicatie is niet mogelijk.

7 Onderhoud

7.1 Periodieke ijking

Het is van essentieel belang dat alle meetinstrumenten regelmatig worden gekalibreerd, zodat de in deze handleiding vermelde technische specificaties kunnen worden gegarandeerd. Wij bevelen een jaarlijkse ijking aan

7.2 Zekeringen

F1, F2, F3: F5A/ (32 x 6,3) mm (Breekcapaciteit: 50 kA)

Hoofdzekeringen voorzien voor de bescherming van de adapter

Waarschuwingen!

- Schakel de adapter uit en ontkoppel alle testaccessoires en het netsnoer alvorens de zekeringen te vervangen.
- Vervang doorgebrande zekeringen door hetzelfde type als omschreven in dit document.

7.3 Onderhoud

Neem voor reparaties binnen of buiten de garantieperiode contact op met uw leverancier voor verdere informatie.

Het is onbevoegden niet toegestaan de analyser te openen. Er bevinden zich geen onderdelen in het instrument die door de gebruiker vervangen kunnen worden.

7.4 Poetsen

Gebruik een zachte, licht bevochtigde doek met zeepwater of alcohol om het oppervlak van de analysator te reinigen. Laat het instrument volledig drogen alvorens het te gebruiken.

Opmerkingen:

- Gebruik geen vloeistoffen op basis van benzine of koolwaterstoffen!
- Mors geen reinigingsvloeistof over het instrument!

8 Technische eigenschappen

8.1 Diagnose test (EVSE)

U1N, U2N, U3N – Spanning van het netwerk

Meetbereik (V)	Resolutie (V)	Nauwkeurigheid	
0440	1	+(2% van aflezing+ 2 cijfers)	
Nominale frequentiebereik	0Hz, 1	4 Hz500Hz	
Veld – Fase rotatie			
Resultaten weergave	1.2.3 of 3.2.1		
UCP+, UCP Spanning			
Meetbereik (V)	Resolutie (V)	Nauwkeurigheid	
19,9V19,9V	0,1	+(2% van aflezing+ 2 cijfers)	
Resultaat	positie	eve, negatieve piekwaarde (8µs interval)	
Freq - Frequentie			
Meetbereik (Hz)	Resolutie (Hz)	Nauwkeurigheid	
500,01500,0	0,1	1% van aflezing	
D – Bedrijfscyclus			
Meetbereik (%)	Resolutie (%)	Nauwkeurigheid	
0,199,9	0,1	<u>+</u> 10cijfers	

Ievse – Laadstroom beschikbaar bij laadkabel/ EVSE

Weergave bereik (A)	Resolutie (A)	Nauwkeurigheid
0,099,9	0,1	Berekende waarde*

*Volgens tabel A.8 in IEC/EN 61851-1

toff – Uitgeschakelde tijd (PEop)

Meetbereik (ms)	Resolutie (ms)	Nauwkeurigheid
0399	1	<u>+(1% van aflezing+ 5 cijfers)</u>
toff – Uitgeschakelde tijd (I cPsh)		

Meetbereik (s)	Resolutie (ms)	Nauwkeurigheid
0,003,10	10	<u>+(1% van aflezing+ 5 cijfers)</u>

Nota: Voor toff wordt de L1-N-kanaal gemeten

8.2 PP, CP-simulator

PP-simulatie

Status	Weerstand
N.C.	>300kΩ
13A	1,5kΩ <u>+</u> 1,5%
20A	680 <u>+</u> 1,5%
32A	220 Ω <u>+</u> 1,5%
63A	100Ω <u>+</u> 1,5%
80A	56 Ω <u>+</u> 5%

CP-simulatie

Status	Weerstand
А	>300kΩ
В	2,74kΩ <u>+</u> 1,5%
С	882Ω <u>+</u> 1,5%
D	246 Ω <u>+</u> 1,5%

8.3 Systeem status

Mogelijke systeem statuten (gemeten waarden geïnterpreteerd door de Analyser*)

Statuut	Betekenis
A1	Niet aan EV verbonden
A2	Niet aan EV verbonden / PWM
B1	EV verbonden
B2	EV verbonden / PWM
C1	EV geladen
C2	EV geladen / PWM
D1	EV geladen en ventilatie
D2	EV geladen en ventilatie / PWM
E	Fout
F	Defect
Ongeldig	CP signaal kan niet geclassificeerd worden

*Volgens tabel A.4 in IEC/ EN 61851-1

Als er meer statuten als resultaat worden weergegeven, kunnen alle statuten als geldig worden beschouwd volgens IEC/EN 61851-1.

8.4 Foutmeldingen

Foutmeldingen	Toegepast op :	Parameter	Beschrijving
L/L1op			L/L1 geleider geopend
L/L2op			L/L2 geleider geopend
L/L3op			L/L3 geleider geopend
Nop	INPUT		N geleider geopend
РЕор			PE geleider geopend
L 🕶 PE			L/L1 en PE geleiders gekruist*
U EXT (PE)			Externe spanning op PE (op input zijde)*
-D-sh		E1	CP-diode kortgesloten
511	OUTPUT		EVSE output zou spanningsloos
			moeten gemaakt worden binnen 3
	-		S.
CPsh		E2	CP –PE kortgesloten
			EVSE output zou spanningsloos
			moeten gemaakt worden binnen 3
	-		S.
РЕор		E3	PE geopend
			EVSE-output zou spanningsloos
			moeten gemaakt worden binnen
			100 ms.

*Netwerk spanning is verbonden met PE via $1 M \Omega$ weerstand

8.5 Anderen

Output spanning LEDON: U_{LX} -N>50V

8.6 Algemene gegevens

Batterij vermogen voeding	7,2 V DC (4,4 Ah Li-ion)
Batterij laadtijd:	Typisch 4 uur (diepe ontlading)
Netwerk vermogen voeding:	115 V ~ <u>+</u> 10%
	230V ~ <u>+</u> 10%
	230V / 400V 3 <u>+</u> 10%
	50Hz – 60Hz, 60 VA
Beveiligingscategorie	300 V CAT II
Batterij gebruikstijd:	
Inactieve stand	>32 uren
Diagnose test	>18 uren
Beschermingsclassificatie	Versterkte isolatie
Meetcategorie	300V CAT II
Vervuilingsgraad	2
Beschermingsgraad	IP 65 (gesloten behuizing) , IP40 (open behuizing)
	IP 20 (hoofdteststekker)
Afmetingen (w x h x l)	36 cm x 16 cm x 33 cm
Gewicht	
Geluids-en Visuele waarschuwing	ja
Elektromagnetische compatibilitei	t (EMC)
Emissie	EN 55011 Klasse B (Groep 1)
Immuniteit	Industrieel Elektromagnetische omgeving
Referentie voorwaarden	
Referentie temperatuur bereik	25°C <u>+</u> 5°C
Referentie vochtigheidsbereik	40% RV60% RV
Werkingsvoorwaarden	
Werktemperatuurbereik	0°C50°C
Maximale relatieve luchtvochtigheid	90% RV (0°C40°C), zonder condensatie
Nominale werkingshoogte	Tot 300m
Bergingsvoorwaarden	
Temperatuurbereik	-10%°C70°C
Maximale relatieve luchtvochtigheid	90% RV (-10°C+40%)
	80% RV (40°C60°C)
RS 232 communicatie	
RS232 seriële communicatie	Galvanisch gescheiden
Baud ratio	115200 baud ratio,1 stop bit, geen pariteit
Connector	Standaard RS232;9 pin D vrouwelijk
Bluetooth communicatie:	
Bluetooth module	Klasse 2

De specificaties worden vermeld met een dekkingsfactor van k = 2, hetgeen overeenkomt met een betrouwbaarheidsniveau van ongeveer 95 %.

De nauwkeurigheid geldt voor 1 jaar onder referentieomstandigheden.

Temperatuurcoëfficiënt buiten deze grenzen is 0,2 % van de gemeten waarde per °C, en 1 cijfer.