

Analyseur eMobility

A 1632

Mode d'emploi

Version 1.3.7, Code nr. 20 752 886

Distributeur :

C.C.I. SA Louisa-Marialei 8, b. 5 2018 Antwerpen BELGIQUE T: 03/232.78.64 F: 03/231.98.24 E-mail: info@ccinv.be

Fabricant :

Metrel d.d. Ljubljanska cesta 77 1354 Horjul Slovenie

Website : <u>http://www.metrel.si</u> e-mail : <u>metrel@metrel.si</u> **CE** La marque sur votre équipement certifie qu'il répond aux exigences de toutes les réglementations de l'UE (Union européenne) concernées

© 2019 Metrel

Les noms commerciaux Metrel®, Smartec®, Eurotest®, Auto Sequence® sont des marques déposées en Europe et dans d'autres pays.

Aucune partie de cette publication ne peut être reproduite ou utilisée sous quelque forme ou par quelque moyen que ce soit sans l'autorisation écrite de METREL.

Index

1	Desc	cription générale	5
	1.1	Avertissements et notes	5
	1.1.1	Marquages sur l'instrument	6
	1.1.2	Notes au sujet des fonctions de mesure	6
	1.2	Batterie et chargement de la batterie Li-ion	7
	1.2.1	Indicateur Batterie	7
	1.2.2	Chargeur	7
	1.2.3	Mode d'emploi batterie rechargeable Li-ion	7
	1.3	Normes appliquées	8
2	Acce	ssoires	9
	2.1 5	Set standard	9
	2.2 A	ccessoires en option	9
3	Desc	cription de l'adaptateur	10
	3.1	Panneau frontal	10
4	Utili	sation de l'analyseur 12	
	4.1	Considération au sujet de l'alimentation de courant	13
	4.2	Mode d'emploi	13
	4.2	1 Comment sélectionner ou changer le mode d'opération	14
	4.3	Utilisation en mode autonome	14
	4.4	Utilisation à distance	14
5	Test	s Uniques	15
	5.1	Connexion de test vers les câbles de chargement/stations	15
	5.1.1	Connexion câbles de chargement détachables pour Mode 3 EVSE	15
	5.1.2	Connexion vers câbles de chargement mode 2	15
	5.1.3	Connexion vers mode 3 EVSE	16
	5.2	Tests de sécurité et de fonction	16

	5.3	Test de diagnostic – Simulateur EV	17	
	5.3.3	1 Commande à distance		17
	5.3.2	2 Mode autonome		18
	5.4	Test de diagnostique – Moniteur		18
	5.5	Test de diagnostique – Erreurs CP		19
	5.6	Simulation d'erreurs sur le réseau		20
	5.6.3	$1~{ m S}$ imulation de la connexion du câble de chargement sur réseau défect	ueux	20
	5.6.2	2 Simulation erreur se produisant pendant l'utilisation		20
6	Mise	e à jour de l'adaptateur		21
7	Entr	etien		22
	7.1	Calibrage périodique		22
	7.2	Fusibles		22
	7.3	Entretien		22
	7.4	Nettoyage		22
8	Cara	actéristiques techniques		23
	8.1	Test de diagnostique (EVSE)		23
	8.2	PP, CP simulator		24
	8.3	Statut du système		24
	8.4	Erreurs		25
	8.5	Autres		25
	8.6	Données générales		26

1 Description générale

L'analyseur eMobility est un adaptateur de test multifonctionnel, portable, alimenté par pile ou par secteur, destiné à tester la sécurité et le fonctionnement des EAVE (équipement d'alimentation de véhicule électrique) et des câbles de charge pour les VE (véhicule électrique).

Fonctions et caractéristiques disponibles offertes par l'analyseur eMobility :

- > Test de diagnostic pour la vérification du bon fonctionnement du circuit CP ;
- > Simulation des circuits CP et PP des véhicules électriques ;
- > Simulation d'erreurs sur le circuit CP et le réseau d'entrée ;
- > Entrées/sorties accessibles pour la connexion des testeurs de sécurité ;
- > Surveillance de la communication entre la station de charge et le VE ;
- > Communication Bluetooth avec les testeurs de sécurité Metrel.

1.1 Avertissement et notes

Afin de maintenir le plus haut niveau de sécurité pour l'opérateur lors des différents tests et mesures, Metrel recommande de conserver les adaptateurs de votre eMobility Analyser en bon état et sans dommage. Lorsque vous utilisez l'adaptateur, tenez compte des avertissements généraux suivants :

- Le symbole sur l'équipement de test signifie "Lisez le manuel d'instructions avec un soin particulier pour une utilisation sûre". Le symbole exige une action !
- Si l'équipement de test est utilisé d'une manière non spécifiée dans ce manuel d'instructions, la protection fournie par l'équipement pourrait être compromise !
- Suivez attentivement les instructions du manuel d'instructions, sinon l'utilisation de l'équipement d'essai peut être dangereuse pour l'opérateur, l'équipement d'essai lui-même ou pour l'objet testé !
- N'utilisez pas l'équipement de test ni aucun des accessoires si vous constatez des dommages !
- Les prises d'entrée/sortie sont uniquement destinées à des fins de test ! Ne connectez pas d'autres appareils, à l'exception des équipements de test appropriés.
- Ne branchez pas l'équipement d'essai à une tension de secteur différente de celle définie sur l'étiquette à côté du connecteur secteur, sinon il risque d'être endommagé.
- Utilisez uniquement un système d'alimentation secteur monophasé ou triphasé mis à la terre pour alimenter l'A 1632. Le PE doit avoir une faible impédance à la terre !
- Certains pré-tests qui pourraient déterminer le défaut PE sur le secteur sont désactivés en mode 2, pour permettre le fonctionnement dans le système de tension IT. Lors de l'utilisation du mode 2, cette note doit être prise en compte. Voir le chapitre 4.2 Modes de fonctionnement.

- Toutes les précautions normales de sécurité doivent être prises afin d'éviter tout risque de choc électrique lors de travaux sur des installations électriques !
- Seules des personnes suffisamment formées et qualifiées peuvent faire fonctionner l'équipement.
- L'intervention ou le réglage du service ne peut être effectué que par un personnel compétent et autorisé !

1.1.1 Marquages sur l'instrument

"Lisez le manuel d'instructions en portant une attention particulière à la sécurité des opérations". Le symbole exige une action !

La marque apposée sur votre équipement certifie qu'il répond aux exigences de toutes les réglementations européennes auxquelles il est soumis.

Ces équipements doivent être recyclés en tant que déchets électroniques.

Cet équipement est protégé par une isolation renforcée.

1.1.2 Notes au sujet des fonctions de mesures

R iso

- Les résistances dans la zone de SORTIE, entre les terminaux L/L1-PE, L2-PE, L3-PE sont d'environ 100 M Ω et entre les terminaux L/L1-N, L2-N, L3-N, Lx-Ly sont d'environ 200 M Ω . Il convient d'en tenir compte si l'on mesure le Riso.
- Les indicateurs LED de tension OUTPUT peuvent s'allumer pendant le test d'isolation. Cela n'a pas de signification particulière et n'a pas d'influence sur la mesure.

Test diagnostique (EAVE)

- En raison de la diaphonie capacitive entre les conducteurs des adaptateurs de sortie triphasés, une certaine tension ULxN sera affichée sur les phases non connectées.
- N'utilisez pas le câble adaptateur A 1631 Monitor pour des courants de charge supérieurs à 32 A.

1.2 Batterie et chargement de la batterie Li-ion

L'adaptateur A 1632 est alimenté par une batterie Li-ion ou par une alimentation secteur.

1.2.1 Indicateur de batterie

Réseau	Puissance	ON LED	
Connecté	Off	Clignotant blanc	Analyser est en train de charger
Connecté	On	Vert	Analyser est allumé et est en train de charger
Non connecté	On	Vert	Analyser est allumé, Ubat > 20% capacité
Non connecté	On	Rouge	Analyser est allumé, Ubat<20% capacité
		Clignotant	Erreur pile ou pile est complètement déchargée
		rouge-bleu	

Le voyant LED rouge indique le statut de la batterie.

1.2.2 Chargeur

La pile est chargée lorsque l'alimentation secteur est connectée à l'adaptateur A 1632. Le système de charge intelligent assure une protection appropriée et une durée de vie maximale de la pile Li-ion. Le temps de charge typique est de 4 h et le fonctionnement autonome est >18 h.

1.2.3 Mode d'emploi de la batterie Li-ion

Les batteries Li-ion nécessitent un entretien et des soins de routine lors de leur utilisation et de leur manipulation. Afin d'obtenir une durée de vie maximale de la batterie, veuillez considérer :

Utilisation :

- Ne laissez pas les piles inutilisées pendant de longues périodes plus de 6 mois (autodécharge).
- Ne laissez pas une pile en charge prolongée lorsqu'elle n'est pas utilisée.

Entreposage :

- Chargez ou déchargez la pile de l'adaptateur à environ 50 % de sa capacité avant le stockage.
- Chargez la pile de l'adaptateur à environ 50 % de sa capacité au moins une fois tous les six mois.

Transport :

• Vérifiez toujours toutes les réglementations locales, nationales et internationales applicables avant de transporter un bloc de piles Li - ion.

1.3 Normes applicables

L'adaptateur A 1632 est fabriqué et testé conformément aux réglementations suivantes

Compatibilité él	Compatibilité électromagnétique (CEM)			
EN 61326-1	Matériel électrique de mesure, de commande et de laboratoire - Exigences relatives à la CEM - Partie 1 : Exigences générales			
EN 61326-2-2	Matériel électrique de mesure, de commande et de laboratoire - exigences relatives à la CEM - partie 2-2 : exigences particulières - configurations d'essai, conditions de fonctionnement et critères de performance des équipements portables d'essai, de mesure et de surveillance utilisés dans les réseaux de distribution basse tension			

Sécurité (LVD)	
EN 61010-1	Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire - Partie 1 : Prescriptions générales
EN 61010-2-030	Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire - Partie 2-030 : Prescriptions
EN 61010-031	particulières pour les circuits d'essai et de mesure Prescriptions de sécurité pour les ensembles de sondes portatives de mesure et d'essai électriques

Fonctionnel	
Séries EN 61557	Sécurité électrique dans les réseaux de distribution basse
EN 61851-1	tension jusqu'à 1000 V c.a. et 1500 V c.c Appareils de
	contrôle, de mesure ou de surveillance des mesures de
	protection
	Système de charge conductrice pour véhicules électriques
	Partie 1 : Exigences générales

Pile Li-ion	
IEC 62133	Piles et batteries secondaires contenant des électrolytes alcalins ou d'autres électrolytes non acides - Exigences de sécurité pour les piles secondaires scellées portables et pour les batteries qui en sont constituées, destinées à être utilisées dans des applications portables

Remarques à propos des normes EN et IEC :

Le texte de ce manuel contient des références aux normes européennes. Toutes les normes de la série EN 6XXXX (par ex. EN 61010) sont équivalentes aux normes CEI portant le même numéro (par ex. CEI 61010) et ne diffèrent que dans les parties modifiées requises par la procédure d'harmonisation européenne...

2 Accessoires

Les accessoires se composent d'accessoires standard et d'accessoires optionnels. Les accessoires optionnels peuvent être livrés sur demande. Voir la liste ci-jointe pour la configuration standard et les options ou contactez votre distributeur ou consultez la page d'accueil METREL :: <u>http://www.metrel.si</u>.

2.1 Set standard

- eMobility-analyseur A 1632
- Cordon d'alimentation monophasé 10 A prise vers triphasé prise 16 A adaptateur A 1633
- Câble de test avec connexion prise mâle type 2, longueur 2 m, A 1634
- Cordon de mesure 2 mm / 4 mm prise banane de sécurité adaptateur rouge, longueur 1 m, A 1635
- Mallette de protection pour accessoires (monté sur la valise)
- Mode d'emploi
- Certificat de calibrage

2.2 Accessoires en option

Vous trouverez sur la feuille ci-jointe une liste des accessoires optionnels et des clés de licence disponibles sur demande auprès de votre distributeur.

3 Description de l'adaptateur

3.1 Panneau frontal

Le panneau de l'utilisateur est présenté dans le Figure 3.1 ci-dessous

Figure 3.1 : Panneau frontal

1	Entrée pour alimentation réseau (CEE 16 A).
2	La LED rouge du secteur indique la connexion au secteur (mode de fonctionnement défini). Voir le chapitre 4.1 Considérations relatives à l'alimentation électrique pour plus d'informations.
3	Fusibles d'entrée (voir chapitre 7.2 Fusibles pour plus d'informations)
4	Lx/ N/ PE/ CP/ PP prises d'ENTRÉE de sécurité pour le raccordement d'un testeur de sécurité
5	Boucle de courant pour le raccordement d'une pince de courant de fuite pour la mesure de l'I $_{\mbox{\scriptsize PE}}$
6	Bouton UINPUT Basculer pour appliquer / ne pas appliquer la tension sur les connecteurs d'ENTREE (prise 1 phase, connecteur de type 2, prise 3 phases, prises de sécurité 4 mm/ 2 mm)

7	Indicateur UINPUT LED		
	ON = tension appliquée, OFF = ten	nsion non appliquée	
8	Prise INPUT de type 2 pour la connexion d'un câble de charge triphasé Mode 3		
9	Prise 1 phase INPUT pour la connexion d'un câble de charge 1 phase Mode 2		
10	Port de connexion RS232 (destiné à la mise à jour du micro logiciel et à des fins		
	de service)		
11	ON LED multi couleurs		
	Voir le chapitre 1.2.1 Indication de la pile	e pour plus d'informations	
12	Touche ON / OFF		
	Allume l'analyseur eMobilité (courte pres	sion) ou l'éteint (2 s pression). Arrêt	
	automatique après 20 minutes d'inactivit	é	
13	La LED fonction à distance indique que l'a	adaptateur est contrôlé par le testeur de	
	sécurité Metrel (y compris CP, PP et état	d'erreur)	
14	Commutateur rotatif pour la sélection de	différentes erreurs simulées :	
	Voir le chapitre 8.4 Erreurs pour plus d'informations.		
15	Erreur sur la touche ON	. ,	
	Activation/desactivation de l'erreur select	tionnee.	
16	Erreur sur la LED		
17	ON = erreur appliquee, OFF = erreur nor		
1/	Commutateur rotatif pour le reglage de l'état du pilote de controle (CP cote		
	SUKIIE)		
	Position	EV chargé et ventilation	
	B	EV connecté	
		Ev connecte Pas de VE connectó	
		VE connectó	
10	Commutatour rotatif pour la réglage de l'	Provimitá Básistance nominale du	
10	Commutateur rotatif pour le reglage de la proximite Resistance nominale du		
10	Courding phote (PP ou cole SORTIE) [NC, 15 A, 20 A, 52 A, 65 A, 60 A]		
15	testeur de sécurité		
20	1/11 12 13 ED de sortie		
20	ON = présence de la tension secteur au r	niveau de la connexion de test OUTPUT.	
	OFF = absence de tension secteur au niv	eau de la connexion de test OUTPUT.	
21	Connecteurs de sortie pour la connexion	du câble de test à la sortie du câble de	
	charge ou FAVE		
22	Prise INPUT triphasée pour la connexion	d'un câble de charge triphasé Mode 2	
Note ·	, p · ••··••••		

Note :

Côté ENTRÉE, les prises de sécurité L/L1, L2, L3, N, PE, CP et PP (4) sont connectées en parallèle avec une prise de type 2 (8), une prise monophasée (9) et une prise triphasée (22)

4 Utilisation de l'analyser

L'analyseur eMobility peut fonctionner de manière autonome ou être commandé à distance via une liaison de communication Bluetooth avec Metrel Instrument. Les conditions de test suivantes peuvent être définies :

Boutons,	Relaté à	Conditions de test
commutateurs, LED		
UINPUT On/Off = Off	INPUT	Pas de tension à l'entrée du câble de charge,
	L/L1,L2,L3,N,PE	l'entrée est déconnectée du secteur
UINPUT On/Off = On	INPUT	Tension de réseau Condition NORMALE à
Error ON = Off	L/L1,L2,L3,N,PE	l'entrée du câble de charge
UINPUT On/Off = On	INPUT	Condition d'ERREUR de tension secteur sur
Erreur ON = On	L/L1,L2,L3,N,PE	l'entrée du câble de charge (sélectionnée par
ERREURS INPUT est		la position de l'interrupteur ERREURS).
activé		de tension secteur pour plus d'informations.
PP STATE	OUTPUT	Simulation VE, câble de charge, puissance
	РР	de charge
CP STATE	OUTPUT	Simulation de VE, modes de fonctionnement
Erreur ON = Off	СР	normaux :
		A, B, C pas de ventilation,
		A, B, D ventilation necessaire pendant la charge
Error ON = On	OUTPUT	Simulation VE, erreur sur simulation CP :
ERREUR est activé	CP	->-sh - Diode court,
		CPsh - CP PE court,
		PEop - PE ouvert
Toutes combinaisons	OUTPUT	Connexion à la sortie du câble / station
	L/L1,L2,L3,N,PE	de charge. La condition dépend de l'état
		de l'appareil

4.1 Considération alimentation de puissance

L'entrée CEE triphasée de 16 A est destinée à être raccordée à l'alimentation secteur monophasée et triphasée.

Connexion monophasé

Une fiche monophasée 10 A vers un adaptateur de connecteur de câble CEE 3 phases 16 A doit être utilisée pour une connexion monophasée. Il convient pour la charge interne des batteries et pour l'alimentation monophasée de la section INPUT pour le test des câbles de charge en mode 2 monophasé.

Connexion Triphasé

Le test des câbles de charge triphasés en mode 2 nécessite une alimentation secteur triphasée de l'analyseur eMobility et de sa section INPUT, la connexion du fil N neutre est obligatoire. Une rallonge ordinaire triphasée CEE 16 A à 5 fils peut être utilisée pour l'alimentation secteur.

Mode d'utilisation	Symbole	Indicateur LED	Description
Mode 1	☆ N—→PE	Allumé	Connexion correcte
Mode 2	₩ N -// PE	Clignotant (cycle 5s)	Connexion correcte
	₩ L O N	Clignotant (cycle ~0,3s)	L - N croisé ou système de tension erroné

Note

Si la tension secteur est hors des niveaux standard pour 115 V~, 230 V~ et 230 V / 400 V 3~, la LED RESEAU clignote rapidement, l'analyseur eMobility ne peut pas être mis en marche et le fonctionnement avec l'adaptateur n'est pas possible.

4.2 Mode d'utilisation

L'analyseur a deux modes de fonctionnement.

Mode 1

Le mode 1 est le mode de fonctionnement privilégié. Il est indiqué par un court bip lorsque la tension secteur est appliquée. Dans ce mode, la connexion PE des connecteurs INPUT est reliée au conducteur N de l'installation. Cela permet d'éviter les déclenchements intempestifs du DDR lorsque des tests de DDR ou d'impédance sont effectués.

Ce mode de fonctionnement 1 est adapté aux systèmes de tension TN et TT. La LED d'alimentation indique une erreur et l'analyseur ne peut pas être mis en marche s'il est connecté à un système de tension IT.

Mode 2

Le mode 2 est indiqué par trois bips sonores lorsque la tension secteur est appliquée. Dans ce mode, la connexion PE des connecteurs INPUT est reliée au conducteur PE de l'installation. Ce mode de fonctionnement convient à tout système de tension.

Note : En mode 2, les DDR de l'installation peuvent se déclencher s'ils sont plus sensibles que le PDDR du câble de charge testé. Le déclenchement du DDR peut être évité si une autre connexion appropriée est utilisée pour les tests du DDR.

4.2.1 Comment sélectionner ou changer le mode d'utilisation

Procédure de configuration

- Éteignez le eMobility Analyser.
- Maintenez le bouton U_{INPUT} enfoncé pendant au moins 5 secondes pendant que vous allumé l'adaptateur (bouton ON/OFF). (Vous pouvez également utiliser l'alimentation secteur en appuyant sur la touche UINPUT et en la maintenant enfoncée pendant au moins 5 secondes).
- Lorsque vous relâchez la touche UINPUT, un bip sonore indique le nouveau mode défini
 :

◄ 》	Bip unique	Mode 1 activé
◄ 测 测 测	3- bips	Mode 2 activé

 eMobility Analyser est maintenant prêt à fonctionner dans un nouveau mode d'utilisation

Note : Répétez la procédure ci-dessus pour passer d'un mode d'opération à un autre

4.3 Utilisation dans le mode autonome

Dans ce mode de fonctionnement, il n'est pas nécessaire d'établir une connexion de données avec les instruments principaux. La LED Remote (commande à distance) est désactivée. La condition de test de l'analyseur eMobility peut être réglée à l'aide des interrupteurs et des touches du panneau avant de l'analyseur.

4.4 Utilisation avec commande à distance

Pour le réglage à distance des conditions de test, l'analyseur de mobilité électronique doit d'abord être connecté via Bluetooth avec le testeur de sécurité Metrel. Voir le tableau de sélection des instruments pris en charge et les instruments Manuel d'instructions, chapitre Paramètres pour plus d'informations. La LED de l'analyseur à distance est allumée et indique qu'il est contrôlé par l'instrument. En mode à distance, les touches de l'analyseur ne fonctionnent pas (sauf la touche Marche/Arrêt) et l'état des commutateurs rotatifs n'est pas pertinent. Le test Les paramètres sont fixés par l'instrument qui contrôle l'analyseur. La LED de l'analyseur à distance est allumée uniquement lorsque le test de diagnostic associé (EAVE) est sélectionné sur l'instrument. Lorsqu'un autre test de sécurité de l'instrument est sélectionné, l'analyseur ne peut pas être commandé à distance et la LED de la télécommande est éteinte.

5 Tests uniques

5.1 Connexions de tests vers les câbles de charges / centrales

5.1.1 Connexion de câbles détachables pour mode 3 EAVE

Figure 5.1 : Connexion de câbles détachables pour mode 3 EAVE

5.1.2 Connexion vers câbles de charge mode 2

Figure 5.2: Connexion d'un câble de charge Monophasé mode 2

Figure 5.3: Connexion d'un câble de charge Triphasé mode 2

5.1.3 Connexion vers un EAVE mode 3

Figure 5.4: Connexion vers un EAVE mode 3

5.2 Tests de sécurité et de fonctionnalité

En général, les essais et les inspections de sécurité peuvent être effectués en combinaison avec n'importe quel testeur de sécurité. Pour plus d'informations sur la manière d'effectuer les essais et inspections individuels, voir le manuel d'instructions du testeur de sécurité.

Exemple de test de circuit

Figure 5.5 : exemple de tests RISO d'un câble de charge mode 2

Figure 5.6: Exemple d'un test Zline sur EAVE mode 3

Procédure de mesure

- Connectez le câble/station de chargement à l'analyseur de mobilité électronique (voir les circuits de test ci-dessus).
- Sélectionnez la mesure ou l'inspection sur le testeur de sécurité.
- Définir les paramètres de test / les limites de la mesure sélectionnée sur l'instrument de test.
- Mettez le câble / la station de recharge dans le bon mode de fonctionnement en réglant l'analyseur eMobility.
- Connectez les cordons de test de l'instrument aux prises de l'analyseur (facultatif), voir les circuits de test ci-dessus et le manuel d'utilisation de l'instrument de test.
- Effectuer la mesure ou l'inspection.
- Sauvegardez les résultats (option).

5.3 Test de diagnose – Simulateur VE

Ce test est destiné à la simulation d'un véhicule électrique avec eMobility Analyser. Les états CP et PP peuvent être réglés afin de mettre le câble/station de charge en mode de fonctionnement correct. Le signal CP est analysé et la présence de tension à la sortie du câble/station de charge est surveillée.

5.3.1 Commande à distance

Le test est effectué en combinaison avec un instrument externe (principal). Les résultats sont transmis via une liaison de communication Bluetooth et affichés sur l'instrument principal.

Connexions de test

Figure 5.8: Test de diagnose – connexion de test de simulateur VE vers câble de charge mode 2 – Commande à distance

Procédure de mesure

- Connectez le câble/station de chargement à l'analyseur de mobilité électronique (voir les circuits de test ci-dessus).
- Sélectionnez le test de diagnostic simulateur de VE sur l'instrument principal.
- Définir les paramètres de test sur l'instrument principal.
- Vérifiez que l'analyseur eMobility est en mode "Remote" (commande à distance) (la communication Bluetooth entre l'analyseur eMobility et l'instrument principal est établie).
- Exécutez le test de diagnostic.
- Définir manuellement le statut du test (facultatif).
- Sauvegardez les résultats (facultatif).

Pour plus d'informations sur les paramètres de test et les résultats affichés, consultez le manuel d'instructions de l'instrument principal.

5.3.2 Mode autonome

La condition de test de l'analyseur eMobility peut être réglée à l'aide des interrupteurs et des touches situées sur le panneau avant de l'analyseur. Seuls les câbles de charge monophasés et triphasés du mode 2 peuvent être testés dans ce mode.

Figure 5.9 : Test diagnostique – Simulateur VE connexion de test avec les câbles de charge mode 2 – Mode autonome

5.4 Test diagnostique – Monitor

Ce test contrôle et analyse le signal CP et les tensions entre le câble / la station de charge et le véhicule électrique. Pour ce test, un câble adaptateur de moniteur (A 1631) est nécessaire.

Le test est effectué en combinaison avec l'analyseur eMobility et un instrument externe (principal). Les résultats sont transmis par Bluetooth et affichés sur l'instrument principal.

Connexion de test

Figure 5.10: Exemple d'un test diagnostic - Moniteur

Procédure de mesure

- Connectez l'adaptateur de câble A 1631 entre le câble / la station de chargement et le véhicule électrique.
- Connecter les sondes de test à un analyseur eMobilité 1632.
- Sélectionnez le test de diagnostic Moniteur sur l'instrument principal.
- Définir les paramètres de test sur l'instrument principal.
- Vérifiez que l'analyseur eMobility est en mode "Remote" (commande à distance) (la communication Bluetooth entre l'analyseur eMobility et l'instrument principal est établie).
- Exécutez le test de diagnostic.
- Définir manuellement le statut du test (facultatif).
- Sauvegardez les résultats (facultatif).

Pour plus d'informations sur les paramètres de test et les résultats affichés, consultez le manuel d'instructions de l'instrument principal.

5.5 Test de Diagnostic – Erreurs CP

Ce test permet de simuler des erreurs typiques (diode court-circuitée, CP - PE courtcircuitée, PE ouverte) sur le signal CP. Le temps de déconnexion du câble / de la station de charge, en réaction à l'erreur simulée sur le signal CP, est mesuré.

Le test est effectué en combinaison avec un instrument externe (principal). Les résultats sont transmis par Bluetooth et affichés sur l'instrument principal.

Connexions de test

Consultez les figures 5.7 et 5.8 pour les connexions de test.

Procédure de mesure

- Connectez le câble/station de chargement à l'analyseur de mobilité électronique (voir figure 5.7 et figure 5.8).
- Sélectionnez le test de diagnostic CP Erreur sur l'instrument principal.
- Définir les paramètres de test (erreur CP) sur l'instrument principal.

- Vérifiez que l'analyseur eMobility est en mode "Remote" (commande à distance) (la communication Bluetooth entre l'analyseur eMobility et l'instrument principal est établie).
- Exécutez le test de diagnostic.
- Définir manuellement le statut du test (facultatif).
- Sauvegardez les résultats (facultatif).

Pour plus d'informations sur les paramètres de test et les résultats affichés, consultez le manuel d'instructions de l'instrument principal.

5.6 Simulations d'erreurs de tension sur réseau

Les câbles de charge en mode 2 ont différents moyens de tester l'état du secteur :

- Certains tests sont effectués lors de la connexion au secteur (à la mise sous tension),
- Certains tests surveillent en permanence l'état du réseau.

L'analyseur eMobility propose donc deux options pour simuler les erreurs de secteur

5.6.1 Simulation de la connexion du câble de charge à un réseau électrique défectueux

Une tension secteur défectueuse est appliquée aux bornes / prises INPUT de l'analyseur eMobility

Procédure de mesure

- Connectez le câble de chargement à l'analyseur de mobilité électronique (voir figure 5.8).
- Sélectionnez l'erreur à l'aide du commutateur rotatif ERRORS.
- UINPUT doit être désactivé. (Si ce n'est pas déjà fait, réglez UINPUT sur OFF).
- Appuyez sur la touche Error ON pour définir l'erreur et alimenter le câble de chargement.
- Vérifiez la réponse du câble de chargement testé.

5.6.2 Simulation d'un défaut survenant en cours d'exploitation

L'erreur est activée après que la tension secteur (condition normale) soit appliquée aux bornes / prises INPUT de l'analyseur eMobility.

Procédure de mesure

- Connectez le câble de chargement à l'analyseur de mobilité électronique (voir figure 5.8).
- Sélectionnez l'erreur à l'aide du commutateur rotatif ERRORS.
- UINPUT doit être sur ON. (Si ce n'est pas déjà fait, mettez UINPUT sur ON).
- Appuyez sur la touche ERROR ON pour définir l'erreur.
- Vérifiez la réponse du câble de chargement testé.

Note :

• Il est possible d'effectuer cette simulation pour les erreurs suivantes : L ouvert (toute phase), N ouvert et PE ouvert.

6 Effectuer une mise à jour de l'adaptateur

L'analyseur de mobilité électronique A 1632 peut être mis à niveau à partir d'un PC via le port de communication RS 232. Cela permet de maintenir l'analyseur A 1632 eMobility Analyser à jour même si les normes ou les règlements changent. Téléchargez le dernier firmware sur le centre de téléchargement de Metrel : https://www.metrel.si/en/downloads/

Figure 6.1 : Mise à jour de l'adaptateur

Procédure

- Dévissez deux vis (comme indiqué dans la figure 6.1) et retirez le couvercle de protection du connecteur RS 232.
- Connectez le câble d'interface RS232 standard DB9 sur l'A 1632 et le PC. (Un adaptateur USB vers RS232 doit être utilisé si le port série du PC n'est pas disponible).
- Logiciel spécial de mise à jour FlashMe vous guidera dans la procédure de mise à jour.
- Lorsque la mise à jour est terminée, remettez le couvercle de protection du connecteur RS 232 en place. Dévissez deux vis (comme indiqué à la figure 6.1) et retirez le couvercle de protection du connecteur RS 232.
- Connectez le câble d'interface RS232 DB9 standard sur l'A 1632 et le PC. (Un adaptateur USB vers RS232 doit être utilisé si le port série du PC n'est pas disponible).
- Logiciel spécial de mise à jour FlashMe vous guidera dans la procédure de mise à jour.
- Lorsque la mise à jour est terminée, remettez le couvercle de protection du connecteur RS232 en place.

Note :

- Contactez votre distributeur pour de plus amples informations.
- Il n'est pas possible de mettre à jour le microprogramme par le biais de la communication Bluetooth..

7 Entretien

7.1 Calibrage périodique

Il est essentiel que tous les instruments de mesure soient régulièrement calibrés afin de garantir les spécifications techniques énumérées dans ce manuel. Nous recommandons un calibrage annuel.

7.2 Fusibles

F1, F2, F3 : F5A / (32 x 6,3) mm (Capacité de rupture : 50 kA) (courant maximum de courtcircuitage)

Fusibles principaux prévus pour la protection de l'adaptateur.

Avertissement !

- Éteignez l'adaptateur et débranchez tous les accessoires de test et le cordon d'alimentation avant de remplacer les fusibles.
- Remplacer les fusibles grillés par des fusibles du même type que ceux définis dans ce document.

7.3 Entretien

Pour les réparations sous ou hors garantie, veuillez contacter votre distributeur pour de plus amples informations.

Toute personne non autorisée n'est pas habilitée à ouvrir l'analyseur. Il n'y a pas de pièces remplaçables par l'utilisateur à l'intérieur de l'appareil.

7.4 Nettoyage

Utilisez un chiffon doux, légèrement humidifié avec de l'eau savonneuse ou de l'alcool pour nettoyer la surface de l'analyseur. Laissez l'instrument sécher complètement avant de l'utiliser.

Remarques:

.

- N'utilisez pas de liquides à base d'essence ou d'hydrocarbures !
- Ne renversez pas de solution de nettoyage sur l'instrument !

8 Caractéristiques techniques

8.1 Test diagnostique (EAVE)

U1N, U2N, U3N - Tension du réseau

Gamme de mesure (V)	Résolution (V)	Précision		
0440	1	<u>+(</u> 2% de l'affichage + 2 chiffres)		
Gamme de fréquence nominale		0Hz, 14 Hz500Hz		
Champs – Rotation de phase				
Affichage des résultats		1.2.3 ou 3.2.1		
UCP+, UCP Tension				
Gamme de mesure (V)	Résolution (V)	Précision		
19,9V19,9V	0,1	+(2% de l'affichage + 2 chiffres)		
Résultat	valeur de crêt	ce positive, négative (intervalle 8µs x)		
Freq - Fréquence				
Gamme de mesure (Hz)	Résolution (Hz)	Précision		
500,01500,0	0,1	1% de l'affichage		
D – Cycle d'utilisation				
Commo do mosuro $(0/)$	\mathbf{D}	Drácicion		

Gamme de mesure (%)	Résolution (%)	Précision
0,199,9	0,1	<u>+</u> 10 chiffres
Ievse – Courant de charge disponible par câble de charge / EAVE		

Gamme d'affichage (A)	Résolution (A)	Précision
0,099,9	0,1	Valeur calculée*

*Selon tableau A.8 en IEC/EN 61851-1

toff – Temps de déconnexion (PEop)

Gamme de mesure (ms)	Résolution (ms)	Précision
0399	1	$\pm (1\% \text{ de l'affichage} + 5 \text{ chiffres})$
toff – Temps de déconnexion (-D-sh , CPsh)	

Gamme de mesure (s)	Résolution (ms)	Précision
0,003,10	10	$\pm (1\% \text{ de l'affichage} + 5 \text{ chiffres})$

Note : Pour la toff le canal L1-N est mesuré

8.2 Simulateur PP, CP

Simulation PP

Statut	Résistance
N.C.	>300kΩ
13A	1,5kΩ <u>+</u> 1,5%
20A	680 <u>+</u> 1,5%
32A	220 Ω <u>+</u> 1,5%
63A	100Ω <u>+</u> 1,5%
80A	56 Ω <u>+</u> 5%

Simulation CP

Statut	Résistance
A	>300kΩ
В	2,74kΩ <u>+</u> 1,5%
С	882Ω <u>+</u> 1,5%
D	246 Ω <u>+</u> 1,5%

8.3 Statut du système

États des systèmes possibles (mesurés, interprétés par l'analyseur*)

Statut	Signification	
A1	Pas de VE connecté	
A2	Pas de VE connecté / PWM	
B1	VE connecté	
B2	VE connecté / PWM	
C1	VE chargé	
C2	VE chargé / PWM	
D1	VE chargé et ventilation	
D2	VE chargé et ventilation / PWM	
E	Erreur	
F	Défaillance	
Invalide	Signal CP ne peut pas être classifié	

* Selon le tableau A.4 de la norme IEC/EN 61851-1.

Si plusieurs états sont affichés comme résultat, tous les états peuvent être considérés comme valables selon la norme CEI/EN 61851-1.

8.4 Erreurs

Erreurs	Appliqué à :	Paramètre	Description
L/L1op			L/L1 conducteur ouvert
L/L2op			L/L2 conducteur ouvert
L/L3op			L/L3 conducteur ouvert
Nop	INPUT		N conducteur ouvert
РЕор			PE conducteur ouvert
L O PE			Conducteurs L/L1 et PE croisés*
U EXT (PE)			Tension externe sur PE (sur côté input)*
-⊳ -sh	OUTPUT	E1	Diode CP court-circuitée La sortie OUTPUT de l'EAVE devrait se mettre hors tension dans les 3 secondes
CPsh		E2	CP –PE court-circuitée La sortie OUTPUT de l'EAVE devrait se mettre hors tension dans les 3 secondes.
PEop		E3	PE ouvert La sortie OUTPUT de l'EAVE devrait se mettre hors tension dans les 100 secondes.

*la tension secteur est connectée au PE via une résistance $1 M \Omega$

8.5 Autres

LED TensionOutputON: U_{LX}-N>50V

8.6 Données générales

Puissance alimentation batterie	7,2 V DC (4,4 Ah Li-ion)		
Temps décharge:	Typiquement 4 heures (décharge importante)		
Puissance alimentation réseau:	115 V ~ <u>+</u> 10%		
	230V ~ <u>+</u> 10%		
	230V / 400V 3~ <u>+</u> 10%		
	50Hz – 60Hz, 60 VA		
Catégorie de sécurité	300 V CAT II		
Temps d'utilisation de la batterie	1		
État d'inactivité	>32 heures		
Test de diagnose	>18 heures		
Classification de protection	Isolation renforcée		
Catégorie de mesure	300V CAT II		
Degré de pollution	2		
Degré de protection	IP 65 (boitier fermé), IP40 (boitier ouvert)		
	IP 20 (prise principale de test)		
Dimensions (I x h x p)	36 cm x 16 cm x 33 cm		
Poids	5,2 kg (sans accessoires)		
Signaux auditifs et visuels	oui		
Comptabilité électromagnétique	(EMC)		
Émission	EN 55011 Classe B (Groupe 1)		
Immunité	Environnement Electromagnétique Industriel		
Conditions de référence			
Gamme de température de	25°C <u>+</u> 5°C		
référence			
Gamme d'humidité de référence	40% RV60% HR		
Conditions d'utilisation			
Gamme de température d'utilisation	0°C50°C		
Humidité relative maximale	90% HR (0°C40°C), sans condensation		
Altitude d'utilisation maximale	Jusqu'à 300m		
Conditions de rangement			
Gamme de température	-10%°C70°C		
Humidité maximale relative	90% HR (-10°C+40%)		
	80% HR (40°C60°C)		
Communication RS 232			
Communication en série RS232	Séparation galvanisée		
Ratio Baud	115200 ratio Baud, 1 stop bit, pas de parité		
Connecteur	Standard RS232;9 broche D femelle		
Communication Bluetooth :			
Bluetooth module	Classe 2		

Les spécifications sont cotées avec un facteur de couverture de k = 2, ce qui équivaut à un taux de fiabilité d'environ 95 %.

Les précisions s'appliquent pendant 1 an dans les conditions de référence. Le coefficient de température en dehors de ces limites est de 0,2 % de la valeur mesurée par °C, et de 1 chiffre.